Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560787

ABSTRACT

Poly(vinylidene fluoride) (PVDF)-based solid electrolytes with a Li salt-polymer-little residual solvent configuration are promising candidates for solid-state batteries. Herein, we clarify the microstructure of PVDF-based composite electrolyte at the atomic level and demonstrate that the Li+-interaction environment determines both interfacial stability and ion-transport capability. The polymer works as a "solid diluent" and the filler realizes a uniform solvent distribution. We propose a universal strategy of constructing a weak-interaction environment by replacing the conventional N,N-dimethylformamide (DMF) solvent with the designed 2,2,2-trifluoroacetamide (TFA). The lower Li+ binding energy of TFA forms abundant aggregates to generate inorganic-rich interphases for interfacial compatibility. The weaker interactions of TFA with PVDF and filler achieve high ionic conductivity (7.0 × 10-4 S cm-1) of the electrolyte. The solid-state Li||LiNi0.8Co0.1Mn0.1O2 cells stably cycle 4900 and 3000 times with cutoff voltages of 4.3 and 4.5 V, respectively, as well as deliver superior stability at -20 to 45 °C and a high energy density of 300 Wh kg-1 in pouch cells.

2.
Small Methods ; 8(1): e2301162, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37821415

ABSTRACT

Solid-state lithium batteries (SSLBs) have great development prospects in high-security new energy fields, but face major challenges such as poor charge transfer kinetics, high interface impedance, and unsatisfactory cycle stability. Defect engineering is an effective method to regulate the composition and structure of electrodes and electrolytes, which plays a crucial role in dominating physical and electrochemical performance. It is necessary to summarize the recent advances regarding defect engineering in SSLBs and analyze the mechanism, thus inspiring future work. This review systematically summarizes the role of defects in providing storage sites/active sites, promoting ion diffusion and charge transport of electrodes, and improving structural stability and ionic conductivity of solid-state electrolytes. The defects greatly affect the electronic structure, chemical bond strength and charge transport process of the electrodes and solid-state electrolytes to determine their electrochemical performance and stability. Then, this review presents common defect fabrication methods and the specific role mechanism of defects in electrodes and solid-state electrolytes. At last, challenges and perspectives of defect strategies in high-performance SSLBs are proposed to guide future research.

3.
Adv Mater ; 36(13): e2311195, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38104264

ABSTRACT

The fillers in composite solid-state electrolyte are mainly responsible for the enhancement of the conduction of Li ions but barely regulate the formation of solid electrolyte interphase (SEI). Herein, a unique filler of dielectric NaNbO3 for the poly(vinylidene fluoride) (PVDF)-based polymer electrolyte, which is subjected to the exchange of Li+ and Na+ during cycling, is reported and the substituted Na+ is engaged in the construction of a fluorinated Li/Na hybrid SEI with high Young's modulus, facilitating the fast transport of Li+ at the interface at a high areal capacity and suppressing the Li dendrite growth. The dielectric NaNbO3 also induces the generation of high-dielectric ß phase of PVDF to promote the dissociation of Li salt. The Li/Li symmetrical cell exhibits a long-term dendrite-free cycling over 600 h at a high areal capacity of 3 mA h cm-2. The LiNi0.8Mn0.1Co0.1O2/Li solid-state cells with NaNbO3 stably cycle 2200 times at 2 C and that paired with high-loading cathode (10 mg cm-2) can stably cycle for 150 times and exhibit excellent performances at -20 °C. This work provides a novel design principle of fillers undertaking interfacial engineering in composite solid-state electrolytes for developing the safe and stable solid-state lithium metal battery.

4.
Adv Mater ; 36(13): e2308493, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134134

ABSTRACT

Li-stuffed battery materials intrinsically have surface impurities, typically Li2CO3, which introduce severe kinetic barriers and electrochemical decay for a cycling battery. For energy-dense solid-state lithium batteries (SSLBs), mitigating detrimental Li2CO3 from both cathode and electrolyte materials is required, while the direct removal approaches hardly avoid Li2CO3 regeneration. Here, a decarbonization-fluorination strategy to construct ultrastable LiF-rich interphases throughout the SSLBs by in situ reacting Li2CO3 with LiPF6 at 60 °C is reported. The fluorination of all interfaces effectively suppresses parasitic reactions while substantially reducing the interface resistance, producing a dendrite-free Li anode with an impressive cycling stability of up to 7000 h. Particularly, transition metal dissolution associated with gas evolution in the cathodes is remarkably reduced, leading to notable improvements in battery rate capability and cyclability at a high voltage of 4.5 V. This all-in-one approach propels the development of SSLBs by overcoming the limitations associated with surface impurities and interfacial challenges.

5.
Nat Nanotechnol ; 18(6): 602-610, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36894781

ABSTRACT

The ionic conductivity of composite solid-state electrolytes does not meet the application requirements of solid-state lithium (Li) metal batteries owing to the harsh space charge layer of different phases and low concentration of movable Li+. Herein, we propose a robust strategy for creating high-throughput Li+ transport pathways by coupling the ceramic dielectric and electrolyte to overcome the low ionic conductivity challenge of composite solid-state electrolytes. A highly conductive and dielectric composite solid-state electrolyte is constructed by compositing the poly(vinylidene difluoride) matrix and the BaTiO3-Li0.33La0.56TiO3-x nanowires with a side-by-side heterojunction structure (PVBL). The polarized dielectric BaTiO3 greatly promotes the dissociation of Li salt to produce more movable Li+, which locally and spontaneously transfers across the interface to coupled Li0.33La0.56TiO3-x for highly efficient transport. The BaTiO3-Li0.33La0.56TiO3-x effectively restrains the formation of the space charge layer with poly(vinylidene difluoride). These coupling effects contribute to a quite high ionic conductivity (8.2 × 10-4 S cm-1) and lithium transference number (0.57) of the PVBL at 25 °C. The PVBL also homogenizes the interfacial electric field with electrodes. The LiNi0.8Co0.1Mn0.1O2/PVBL/Li solid-state batteries stably cycle 1,500 times at a current density of 180 mA g-1, and pouch batteries also exhibit an excellent electrochemical and safety performance.


Subject(s)
Electrolytes , Lithium , Ions , Metals
6.
Angew Chem Int Ed Engl ; 62(24): e202302586, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36896745

ABSTRACT

Solid-state lithium metal batteries (SSLMBs) are promising candidates for high-energy-density energy storage devices. However, there still lacks an evaluation criterion to estimate real research status and compare overall performance of the developed SSLMBs. Herein, we propose a comprehensive descriptor, Li+ transport throughput ( φ L i + ${{\phi{} }_{{{\rm L}{\rm i}}^{+}}}$ ), to estimate actual conditions and output performance of the SSLMBs. The φ L i + ${{\phi{} }_{{{\rm L}{\rm i}}^{+}}}$ is defined as molar number of Li+ passing through unit area of electrode/electrolyte interface in an hour (mol m-2 h-1 ) during cycling of battery, which is a quantizable value after taking complex aspects including cycle rate, electrode areal capacity and polarization into account. On this basis, we evaluate the φ L i + ${{\phi{} }_{{{\rm L}{\rm i}}^{+}}}$ of liquid, quasi-solid-state and solid-state batteries, and highlight three key aspects to achieve high value of φ L i + ${{\phi{} }_{{{\rm L}{\rm i}}^{+}}}$ via building highly efficient cross-phase, cross-gap and cross-interface ion transport in the solid-state battery systems. We believe that the new concept of φ L i + ${{\phi{} }_{{{\rm L}{\rm i}}^{+}}}$ provides milestone guidelines towards large-scale commercialization of SSLMBs.

7.
ACS Appl Mater Interfaces ; 15(14): 17978-17985, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36975718

ABSTRACT

Solid-state polymer electrolytes (SPEs) are considered as one of the most promising candidates for the next-generation lithium metal batteries (LMBs). However, the large thickness and severe interfacial side reactions with electrodes seriously restrict the application of SPEs. Herein, we developed an ultrathin and robust poly(vinylidene fluoride) (PVDF)-based composite polymer electrolyte (PPSE) by introducing polyethylene (PE) separators and SiO2 nanoparticles with rich silicon hydroxyl (Si-OH) groups (nano-SiO2). The thickness of the PPSE is only 20 µm but possesses a quite high mechanical strength of 64 MPa. The introduction of nano-SiO2 fillers can tightly anchor the essential N,N-dimethylformamide (DMF) to reinforce the ion-transport ability of PVDF and suppress the side reactions of DMF with Li metal, which can significantly enhance the electrochemical stability of the PPSE. Meanwhile, the Si-OH groups on the surface of nano-SiO2 as a Lewis acid promote the dissociation of the lithium bis(fluorosulfonyl)imide (LiFSI) and immobilize the FSI- anions, achieving a high lithium transference number (0.59) and an ideal ionic conductivity (4.81 × 10-4 S cm-1) for the PPSE. The assembled Li/PPSE/Li battery can stably cycle for a record of 11,000 h, and the LiNi0.8Co0.1Mn0.1O2/PPSE/Li battery presents an initial specific capacity of 173.3 mA h g-1 at 0.5 C, which can stably cycle 300 times. This work provides a new strategy for designing composite solid-state electrolytes with high mechanical strength and ionic conductivity by modulating their framework.

8.
Adv Mater ; 35(12): e2208951, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36639140

ABSTRACT

Poor ion and high electron transport at the grain boundaries (GBs) of ceramic electrolytes are the primary reasons for lithium filament infiltration and short-circuiting of all-solid-state lithium metal batteries (ASLMBs). Herein, it is discovered that Li2 CO3 at the GBs of Li7 La3 Zr2 O12 (LLZO) sheets is reduced to highly electron-conductive LiCx during cycling, resulting in lithium penetration of LLZO. The ionic and electronic conductivity of the GBs within LLZO can be simultaneously tuned using sintered Li3 AlF6 . The generated LiAlO2 (LAO) infusion and F-doping at the GBs of LLZO (LAO-LLZOF) significantly reduce the Li2 CO3 content and broaden the energy bandgap of LLZO, which decreases the electronic conductivity of LAO-LLZOF. LAO forms a 3D continuous ion transport network at the GB that significantly improves the total ionic conductivity. Lithium penetration within LLZO is suppressed and an all-solid-state LiFePO4 /LAO-LLZOF/Li battery stably cycled for 5500 cycles at 3 C. This work reveals the chemistry of Li2 CO3 at the LLZO GBs during cycling, presents a novel lithium penetration mechanism within garnet electrolytes, and provides an innovative method to simultaneously regulate the ion and electron transport at the GBs in garnet electrodes for advanced ASLMBs.

9.
Sci Bull (Beijing) ; 67(9): 946-954, 2022 May 15.
Article in English | MEDLINE | ID: mdl-36546029

ABSTRACT

Ceramic electrolytes are important in ceramic-liquid hybrid electrolytes (CLHEs), which can effectively solve the interfacial issues between the electrolyte and electrodes in solid-state batteries and provide a highly efficient Li-ion transfer for solid-liquid Li metal batteries. Understanding the ionic transport mechanisms in CLHEs and the corresponding role of ceramic electrolytes is crucial for a rational design strategy. Herein, the Li-ion transfer in the ceramic electrolytes of CLHEs was confirmed by tracking the 6Li and 7Li substitution behavior through solid-state nuclear magnetic resonance spectroscopy. The ceramic and liquid electrolytes simultaneously participate in Li-ion transport to achieve highly efficient Li-ion transfer in CLHEs. A spontaneous Li-ion exchange was also observed between ceramic and liquid electrolytes, which serves as a bridge that connects the ceramic and liquid electrolytes, thereby greatly strengthening the continuity of Li-ion pathways in CLHEs and improving the kinetics of Li-ion transfer. The importance of an abundant solid-liquid interface for CLHEs was further verified by the enhanced electrochemical performance in LiFePO4/Li and LiNi0.8Co0.1Mn0.1O2/Li batteries from the generated interface. This work provides a clear understanding of the Li-ion transport pathway in CLHEs that serves as a basis to build a universal Li-ion transport model of CLHEs.

10.
Nat Commun ; 13(1): 6966, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36379928

ABSTRACT

High-voltage lithium metal batteries suffer from poor cycling stability caused by the detrimental effect on the cathode of the water moisture present in the non-aqueous liquid electrolyte solution, especially at high operating temperatures (e.g., ≥60 °C). To circumvent this issue, here we report lithium hexamethyldisilazide (LiHMDS) as an electrolyte additive. We demonstrate that the addition of a 0.6 wt% of LiHMDS in a typical fluorine-containing carbonate-based non-aqueous electrolyte solution enables a stable Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) coin cell operation up to 1000 or 500 cycles applying a high cut-off cell voltage of 4.5 V in the 25 °C-60 °C temperature range. The LiHMDS acts as a scavenger for hydrofluoric acid and water and facilitates the formation of an (electro)chemical robust cathode|electrolyte interphase (CEI). The LiHMDS-derived CEI prevents the Ni dissolution of NCM811, mitigates the irreversible phase transformation from layered structure to rock-salt phase and suppresses the side reactions with the electrolyte solution.

11.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296849

ABSTRACT

The inner constituents of lithium-ion batteries (LIBs) are easy to deform during charging and discharging processes, and the accumulation of these deformations would result in physical fractures, poor safety performances, and short lifespan of LIBs. Recent studies indicate that the introduction of self-healing (SH) materials into electrodes or electrolytes can bring about great enhancements in their mechanical strength, thus optimizing the cycle stability of the batteries. Due to the self-healing property of these special functional materials, the fractures/cracks generated during repeated cycles could be spontaneously cured. This review systematically summarizes the mechanisms of self-healing strategies and introduces the applications of SH materials in LIBs, especially from the aspects of electrodes and electrolytes. Finally, the challenges and the opportunities of the future research as well as the potential of applications are presented to promote the research of this field.

12.
Angew Chem Int Ed Engl ; 61(47): e202212587, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36169381

ABSTRACT

Constructing stable surface modification layer is an effective strategy to suppress dendrite growth and side reactions of Zinc (Zn) metal anode in aqueous Zn-ion battery. Herein, a multicomponent Cu-Zn alloy interlayer with superior Zn affinity, high toughness and effective inhibition effect on lattice distortion is constructed on Zn foil (Cu-Zn@Zn) to fabricate ultra-stable Zn metal anode. Owning to the advantages of high binding energy of Cu-Zn alloy layer with Zn atoms and less contact area between metallic Zn and electrolyte, the as-prepared Cu-Zn@Zn electrode not only restricts the aggregation of Zn atoms, but also suppresses the pernicious hydrogen evolution and corrosion, leading to homogeneous Zn deposition and outstanding electrochemical performances. Accordingly, the symmetric battery with Cu-Zn@Zn electrode exhibits an ultra-long cycle life of 5496 h at 1 mA cm-2 for 1 mAh cm-2 , and the Cu-Zn@Zn//V2 O5 pouch cell demonstrates excellent cycling stability with a capacity retention of 88 % after 600 cycles.

13.
Nat Commun ; 13(1): 3784, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778401

ABSTRACT

Developing highly active and durable electrocatalysts for acidic oxygen evolution reaction remains a great challenge due to the sluggish kinetics of the four-electron transfer reaction and severe catalyst dissolution. Here we report an electrochemical lithium intercalation method to improve both the activity and stability of RuO2 for acidic oxygen evolution reaction. The lithium intercalates into the lattice interstices of RuO2, donates electrons and distorts the local structure. Therefore, the Ru valence state is lowered with formation of stable Li-O-Ru local structure, and the Ru-O covalency is weakened, which suppresses the dissolution of Ru, resulting in greatly enhanced durability. Meanwhile, the inherent lattice strain results in the surface structural distortion of LixRuO2 and activates the dangling O atom near the Ru active site as a proton acceptor, which stabilizes the OOH* and dramatically enhances the activity. This work provides an effective strategy to develop highly efficient catalyst towards water splitting.

14.
Small ; 18(33): e2203273, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35871502

ABSTRACT

Using 3D host is an effective way to solve the dendrite growth problem and accommodate volume changes of lithium (Li) metal anode. However, the preferred Li deposition on the top surface leads to the Li metal agglomeration at the surface. In addition, the large weight of the 3D host also greatly decreases the capacity based on the whole anode. Herein, a bidirectional lithiophilic gradient modification, including a top-down ZnO gradient and a bottom-up Sn gradient, is applied to an ultralight 3D carbon nanofiber host (density: 0.1 g cm-3 ) and ensures the evenly filling lithium deposition in the 3D host. ZnO transforms into highly ionic conductive Li-Zn alloy and Li2 O during cycling, enhancing the Li-ion transportation from top to bottom. The metallic Sn also lowers the Li nucleation potential, guiding the preferential Li deposition from the bottom. With such a host, a stable CE of 97.5% over 100 cycles at 1 mA cm-2 and 3 mAh cm-2 is achieved, and the full battery also delivers good cycling stability over 300 cycles with a high CE of 99.8% coupled with high loading LiFePO4 cathode (10 mg cm-2 ) and low N/P ratio (≈3).

15.
Adv Sci (Weinh) ; 9(12): e2105574, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35212469

ABSTRACT

Li is an ideal anode material for use in state-of-the-art secondary batteries. However, Li-dendrite growth is a safety concern and results in low coulombic efficiency, which significantly restricts the commercial application of Li secondary batteries. Unfortunately, the Li-deposition (growth) mechanism is poorly understood on the atomic scale. Here, machine learning is used to construct a Li potential model with quantum-mechanical computational accuracy. Molecular dynamics simulations in this study with this model reveal two self-healing mechanisms in a large Li-metal system, viz. surface self-healing, and bulk self-healing. It is concluded that self-healing occurs rapidly in nanoscale; thus, minimizing the voids between the Li grains using several comprehensive methods can effectively facilitate the formation of dendrite-free Li.

16.
Adv Mater ; 34(18): e2106704, 2022 May.
Article in English | MEDLINE | ID: mdl-35032965

ABSTRACT

Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g-1 and appropriate lithiation/de-lithiation potential, and has been extensively used as the anode of lithium-ion batteries (LIBs). With the requirements of reducing CO2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG-based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high-rate and low-temperature charging performance. Prospects regarding the development orientation as well as future applications of NG-based materials are also considered, which will provide significant guidance for the current and future research of high-energy-density LIBs.

17.
ACS Appl Mater Interfaces ; 14(1): 1783-1790, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34962756

ABSTRACT

The practical use of lithium-sulfur (Li-S) batteries is limited by serious self-discharge, fast capacity loss, and severe lithium anode erosion due to the shuttling of lithium polysulfides (LiPSs). Herein, we developed a highly efficient ion and electron conductive interlayer composed of Ti2(SO4)3/carbon composite layer-coated Li1.3Al0.3Ti1.7(PO4)3 (CLATP) and graphene to effectively block the diffusion of polysulfide anions but allow rapid Li ion transfer, therefore significantly inhibiting the self-discharge and boosting the cyclic stability of Li-S batteries. The Ti2(SO4)3/carbon thin protective layer endows an optimized adsorption ability toward LiPSs and avoids the side reactions between LATP and LiPSs. The high electronic conductivity of graphene and high ionic conductivity of CLATP ensures the hybrid interlayer rapid electron and fast Li ion transport. As a result, the Li-S battery with the hybrid interlayer shows a high discharge capacity of 671 mAh g-1 after 500 cycles with an extremely low capacity fading of 0.022% per cycle at 1 C. Moreover, the battery shows no self-discharge even after rest for 12 days. This work opens up a new way for the design of functional separators to significantly improve the electrochemical performance of Li-S batteries.

18.
Small ; 18(8): e2106427, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34889053

ABSTRACT

Lithium (Li) metal batteries (LMBs) face huge challenges to achieve long cycling life at wide temperature range owing to the severe dendrite growth at subambient temperature and the intense side reactions with electrolyte at high temperature. Herein, an ultrathin LiBO2 layer with an extremely high Young's modulus of 8.0 GPa is constructed on Li anode via an in situ reaction between Li metal and 4,4,5,5-tetramethyl-1,3,2-dioxa-borolane (TDB) to form LiBO2 @Li anode, which presents two times higher exchange current density than pristine Li anode. The LiBO2 layer presents a strong absorption to Li ions and greatly improves the interfacial dynamics of Li-ion migration, which induces homogenous lithium nucleation and deposition to form a dense lithium layer. Consequently, the Li dendrite growth during cycling at subambient temperature and the side reactions with electrolyte at high temperature are simultaneously suppressed. The LiBO2 @Li/LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) full batteries with limited Li capacity and high cathode mass loading of 9.9 mg cm-2 can steadily cycle for 300 cycles with a capacity retention of 86.6%. The LiBO2 @Li/NCM811 full batteries and LiBO2 @Li/LiBO2 @Li symmetric batteries also present excellent cycling performance at both -20 and 60 °C. This work develops a strategy to achieve outstanding performance of LMBs at wide working temperature-range.

19.
Adv Mater ; 33(52): e2105362, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34658075

ABSTRACT

Most of the catalysts in lithium sulfur (Li-S) batteries present low electronic conductivity and the lithium polysulfides (LiPSs) must diffuse onto the surface of the carbon materials to achieve their conversion reaction. It is a significant challenge to achieve the instantaneous transformation of LiPSs to Li2 S in Li-S batteries to suppress the shuttle effect of LiPSs. Herein, a unique electron and ion co-conductive catalyst of carbon-coated Li1.4 Al0.4 Ti1.6 (PO4 )3 (C@LATP) is developed, which not only possesses strong adsorption to LiPSs, but, more importantly, also promotes the instantaneous conversion reaction of LiPSs to Li2 S. The C@LATP nanoparticles as catalytic active sites can synchronously and efficiently provide both Li ions and electrons to facilitate the conversion reaction of LiPSs. The conversion reaction path of LiPSs using C@LATP changes from traditional "adsorption-diffusion-conversion" to novel "adsorption-conversion," which effectively lowers the decomposition barrier of Li2 S6 and promotes faster conversion of LiPSs. The shuttle effect of LiPSs is considerably suppressed and utilization of sulfur is greatly improved. The Li-S batteries using C@LATP present excellent rate, cycling, and self-discharge properties. This work highlights the significance of electron and ion co-conductive solid-state electrolytes for the instantaneous transformation of LiPSs in advanced Li-S batteries.

20.
ACS Appl Mater Interfaces ; 13(43): 51107-51116, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34672542

ABSTRACT

Polymer electrolytes have gained extensive attention owing to their high flexibility, easy processibility, intrinsic safety, and compatibility with current fabrication technologies. However, their low ionic conductivity and lithium transference number have largely impaired their real application. Herein, novel two-dimensional clay nanosheets with abundant cation vacancies are created and incorporated in a poly(ethylene oxide) (PEO)/poly(vinylidene fluoride-co-hexafluoropropylene)-blended polymer-based electrolyte. The characterization and simulation results reveal that the cation vacancies not only provide lithium ions with additional Lewis acid-base interaction sites but also protect the PEO chains from being oxidized by excess lithium ions, which enhances the dissociation of lithium salts and the hopping mechanism of lithium ions. Benefiting from this, the polymer electrolyte shows a high ionic conductivity of 2.6 × 10-3 S cm-1 at 27 °C, a large Li+ transference number up to 0.77, and a wide electrochemical stability window of 4.9 V. Furthermore, the LiFePO4∥Li coin cell with such a polymer electrolyte delivers a high specific capacity of 145 mA h g-1 with an initial Coulombic efficiency of 99.9% and a capacity retention of 97.3% after 100 cycles at ambient temperature, as well as a superior rate performance. When pairing with high-voltage cathodes LiCoO2 and LiNi0.5Mn1.5O4, the corresponding cells also exhibit favorable electrochemical stability and a high capacity retention. In addition, the LiFePO4∥Li pouch cells display high safety even under rigorous conditions including corner-cut, bending, and nail-penetration.

SELECTION OF CITATIONS
SEARCH DETAIL
...